Two Dimensional Representation of the Dirac Equation in Non-Associative Algebra
نویسندگان
چکیده
In this note a simple extension of the complex algebra to higher dimension is proposed. Using the proposed algebra a two dimensional Dirac equation is formulated and its solution is calculated. It is found that there is a sub-algebra where the associative nature can be recovered.
منابع مشابه
Universal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملThe Dirac Equation and General Linear Transformations of Coordinate Systems
The spinor representation of the Lorentz group does not accept simple generalization with the group GL(4,R) of general linear coordinate transformations. The Dirac equation may be written for an arbitrary choice of a coordinate system and a metric, but the covariant linear transformations of the fourcomponent Dirac spinor exist only for isometries. For usual diagonal Minkowski metric the isomet...
متن کاملOn the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کاملQuaternionic Lorentz group and Dirac equation
Abstract. We formulate Lorentz group representations in which ordinary complex numbers are replaced by linear functions of real quaternions and introduce dotted and undotted quaternionic one-dimensional spinors. To extend to parity the space-time transformations, we combine these one-dimensional spinors into bi-dimensional column vectors. From the transformation properties of the two-component ...
متن کاملTriality, Biquaternion and Vector Representation of the Dirac Equation
The triality properties of Dirac spinors are studied, including a construction of the algebra of (complexified) biquaternion. It is proved that there exists a vector-representation of Dirac spinors. The massive Dirac equation in the vector-representation is actually self-dual. The Dirac’s idea of non-integrable phases is used to study the behavior of massive term.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013